This site is intended for U.S. audiences only.


  1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
  2. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67.
  3. Smit, W.L., et al., Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc Natl Acad Sci U S A, 2020. 117(41): p. 25560-25570.
  4. Armaghany, T., et al., Genetic alterations in colorectal cancer. Gastrointest Cancer Res, 2012. 5(1): p. 19-27.
  5. Cox, A.D., et al., Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov, 2014. 13(11): p. 828-51.
  6. De Filippo, C., et al., Mutations of the APC gene in human sporadic colorectal cancers. Scand J Gastroenterol, 2002. 37(9): p. 1048-53.
  7. Zhu, G., et al., Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer, 2021. 20(1): p. 143.
  8. NIH. Common Cancer Types. [cited 2023 18 Jan]; Available from:
  9. Society, A.C. Colorectal Cancer Facts & Figures 2020-2022. [cited 2023 Jan 24].
  10. Thompson, C.A., T. Begi, and H. Parada, Jr., Alarming recent rises in early-onset colorectal cancer. Cancer, 2022. 128(2): p. 230-233.
  11. Bailey, C.E., et al., Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg, 2015. 150(1): p. 17-22.
  12. AlZaabi, A., et al., Early onset colorectal cancer: Challenges across the cancer care continuum. Ann Med Surg (Lond), 2022. 82: p. 104453.
  13. Wallace, M.B., et al., Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology, 2022. 163(1): p. 295-304.e5.
  14. Wiertsema, S.P., et al., The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients, 2021. 13(3).
  15. Iacob, S., D.G. Iacob, and L.M. Luminos, Intestinal Microbiota as a Host Defense Mechanism to Infectious Threats. Front Microbiol, 2018. 9: p. 3328.
  16. Puschhof, J. and C.L. Sears, Microbial metabolites damage DNA. Science, 2022. 378(6618): p. 358-359.
  17. School, H.M. Can gut bacteria improve your health? 2016 [cited 2023 24 Jan]; Available from:
  18. Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science, 1999. 284(5418): p. 1318-22.
  19. Fux, C.A., et al., Survival strategies of infectious biofilms. Trends Microbiol, 2005. 13(1): p. 34-40.
  20. Sharma, D., L. Misba, and A.U. Khan, Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control, 2019. 8: p. 76.
  21. Stewart, P.S. and J.W. Costerton, Antibiotic resistance of bacteria in biofilms. Lancet, 2001. 358(9276): p. 135-8.
  22. Dejea, C.M., et al., Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A, 2014. 111(51): p. 18321-6.
  23. Swidsinski, A., et al., Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut, 2007. 56(3): p. 343-50.
  24. Drewes, J.L., et al., High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes, 2017. 3: p. 34.
  25. Ettinger, S., Chapter 1 - Obesity and Metabolic Syndrome, in Nutritional Pathophysiology of Obesity and its Comorbidities, S. Ettinger, Editor. 2017, Academic Press. p. 1-26.
  26. Carr, S. and A. Kasi, Familial Adenomatous Polyposis, in StatPearls. 2022, StatPearls Publishing, copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
  27. Dejea, C.M., et al., Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 2018. 359(6375): p. 592-597.
  28. Drewes, J.L., et al., Human Colon Cancer-Derived Clostridioides difficile Strains Drive Colonic Tumorigenesis in Mice. Cancer Discov, 2022. 12(8): p. 1873-1885.
  29. Cuevas-Ramos, G., et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A, 2010. 107(25): p. 11537-42.
  30. Nougayrède, J.P., et al., Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 2006. 313(5788): p. 848-51.
  31. Clarke, W.T. and J.D. Feuerstein, Colorectal cancer surveillance in inflammatory bowel disease: Practice guidelines and recent developments. World J Gastroenterol, 2019. 25(30): p. 4148-4157.
  32. Lara-Tejero, M. and J.E. Galán, A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science, 2000. 290(5490): p. 354-7.
  33. Goodwin, A.C., et al., Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A, 2011. 108(37): p. 15354-9.
  34. Wu, S., et al., Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci, 2007. 120(Pt 11): p. 1944-52.
  35. Fuller, R., Probiotics in human medicine. Gut, 1991. 32(4): p. 439-42.
  36. Vanderhoof, J.A. and R.J. Young, Use of probiotics in childhood gastrointestinal disorders. J Pediatr Gastroenterol Nutr, 1998. 27(3): p. 323-32.
  37. Beachey, E.H., Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis, 1981. 143(3): p. 325-45.
  38. Nueno-Palop, C. and A. Narbad, Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol, 2011. 145(2-3): p. 390-4.
  39. Tsai, C.C., et al., Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int J Food Microbiol, 2005. 102(2): p. 185-94.
  40. Cotter, P.D., C. Hill, and R.P. Ross, Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005. 3(10): p. 777-88.
  41. Rafter, J., et al., Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr, 2007. 85(2): p. 488-96.
  42. María Remes Troche, J., et al., Lactobacillus acidophilus LB: a useful pharmabiotic for the treatment of digestive disorders. Therap Adv Gastroenterol, 2020. 13: p. 1756284820971201.
  43. Ventura, M., et al., Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric, 2014. 94(2): p. 163-8.
  44. Khalesi, S., et al., A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr, 2019. 73(1): p. 24-37.